MiDaS_RVC
Monocular Depth
- Submitted by
- Rene Ranftl
- Authors
- René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, Vladlen Koltun
- Venue
- arXiv:1907.01341
- Abstract
- Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. Standard pretrained model from Dec 2019 with resize method "minimal" for pre-processing (see code link) . Depths scaled and shifted to match the average scale and shift in the KITTI benchmark.
- Runtime
- 100 ms
- External data used
- Default MiDaS model, not trained on VIPER
- Links
- Number of submissions
- 1
- Detailed results
-
Metric All day sunset snow rain night Scale invariant logarithmic error 0.84 0.70 0.87 0.74 1.03 0.87 Absolute squared error [%] 17.99 14.86 13.87 10.34 25.84 25.03 Root mean squared error of the inverse depth 67.53 54.80 70.70 47.78 92.61 71.76